

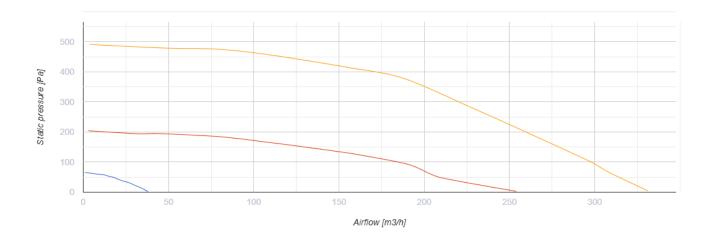
Enave 270 V A14 R

Vertikale Lüftungsanlagen mit einem Gegenstromwärmetauscher aus Polystyrol oder einem Enthalpie-Wärmetauscher

Max. Förderleistung: 331Schalldruckpegel LpA @ 3 m: 34 • Wärmetauschertyp: Counter flow • Abluftfilter: G4 / Coarse > 60%

• Zuluftfilter: G4 / Coarse > 60% (option F7 / ePM1

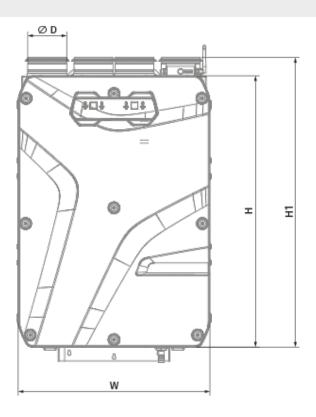
60%)

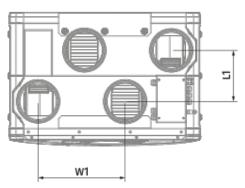

SchalldämmungMotortyp: ECBypass: Manual

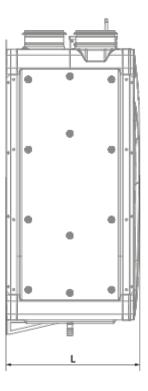
Steuerung: Wired control panelGehäusematerial: EPP • Feuchtigkeitssensor: Optional

• CO2-Sensor: Optional

	Maßeinheit	Enave 270 V A14 R
Luftkanalgröße	mm	125
Phasen	-	1
Versorgungsspannung min	V	230
Versorgungsspannung max	V	230
Frequenz der Netzversorgung	Hz	50/60
Leistung	W	182
Stromaufnahme	Α	1.4
Max. Förderleistung	m³/h	331
Schalldruckpegel LpA @ 3 m	dB(A)	34
Effizienz der Wärmerückgewinnung, max	%	89
Wärmetauschertyp	-	Counter flow
Wärmetauschermaterial	-	Polystyrene
Gewicht	kg	22
Abluftfilter	-	G4 / Coarse > 60%
Zuluftfilter	-	G4 / Coarse > 60% (option F7 / ePM1 60%)
Fördermitteltemperatur max	°C	40
Fördermitteltemperatur min	°C	-25
Ambientlufttemperatur, min	°C	1
Ambientlufttemperatur, max	°C	40
Umgebungsluftfeuchtigkeit, max	%	60
Schutzart	-	IP22






Abmessungen

D	Н	Н1	L	L1	W	W1
125	900	958	452	190	598	273

Zubehör

Sonstiges Zubehör

Produktname	Foto	Beschreibung
SF 356x100x48 Coarse 90% G4		Panel filter G4
SF 356x100x48 ePM1 65% F7		Panelfilter F7

Sensoren

Produktname	Foto	Beschreibung		
HV2		Feuchtigkeitssensor		
<u>CO2-1</u>	real Silver	CO2 Sensor		
<u>CO2-2</u>	in the second se	CO2 Sensor		
HR-S		Elektromechanischer Hygrostat		

hydraulische Siphon

Produktname Foto		Beschreibung			
SH-32		Hydraulischer Siphon zur Kondensatableitung aus Wärmetauschern und Kühlanlagen			

Für runde Kanäle

Produktname	Foto	Beschreibung
<u>SR 125/600</u>		Schalldämpfer aus verzinktem Stahl, gefüllt mit nicht brennbarem schallabsorbierendem Material
SR 125/900		Schalldämpfer aus verzinktem Stahl, gefüllt mit nicht brennbarem schallabsorbierendem Material
SR 125/1200		Schalldämpfer aus verzinktem Stahl, gefüllt mit nicht brennbarem schallabsorbierendem Material

Für runde Kanäle

Produktname	Foto	Beschreibung
KRV 125		Luftklappen zur automatischen Luftstromregelung in runden Lüftungsrohren

Elektroantriebe

Produktname		Foto	Beschreibung
	Belimo TF230		Die Antriebe sind geeignet zur Steuerung der Luftklappen mit der Querschnittsfläche bis 0,4 m², welche die Schutzfunktionen

Ecodesign

Warenzeichen		Vents					
Modell		Enave 270 V A14 R					
6 (6 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4	K	alt	Durchschnittlich		Warm		
Specific energy consumption (SEC) (kWh/(m²/a))	-80.5	A+	-41.4	Α	-16.4	Е	
Typ des Lüftungsgeräts			Bidirectio	nal			
Antriebsart			Drehzahlreg	elung			
Art des Wärmerückgewinnungssystems			Recuperat	tive			
Temperaturänderungsgrad der Wärmerückgewinnung (%)			88				
Max. Luftvolumenstrom (m³/h)			298				
lektrische Eingangsleistung (W) 176							
Bezugs-Luftvolumenstrom (m³/s)		0.058					
Reference pressure difference (Pa)		50					
Specific power input (SPI) (W/(m³/h))		0.351					
Control typology		Local demand control					
Maximum internal leakage rates (%)		2.7					
Maximum external leakage rates (%)		2.7					
Sound power level (dB(A))		55					
The constant of a belief to a constant (AEC) (IAMI) (a)	K	alt	Durchschn	ittlich	Warr	n	
The annual electricity consumption (AEC) (kWh/a)	7	68	231		186	,	
The constable street could (AUC) (IAMb (c)	K	alt	Durchschn	ittlich	Warr	n	
The annual heating saved (AHS) (kWh/a)	9:	.00	4652		2104	4	