Нагреватель серии

HKB

Применение

Канальные водяные нагреватели предназначены для подогрева приточного воздуха в системах вентиляции прямоугольного сечения, а также могут использоваться в качестве подогревателя в приточных или приточно-вытяжных установках.

Конструкция

Корпус нагревателя выполнен из оцинкованной стали, трубные коллекторы изготовлены из медных трубок, поверхность теплообмена – из алюминиевых пластин. Нагреватели выпускаются в двух-, трех- или четырехрядном исполнении и

предназначены для эксплуатации при максимальном рабочем давлении 1,6 МПа (16 бар) и максимальной рабочей температуре воды +100 °C. На выходном коллекторе нагревателя предусмотрен патрубок для установки погружного датчика измерения температуры или защиты от замораживания калорифера. Нагреватель оборудован ниппелем для обезвоздушивания системы.

Монтаж

- Монтаж нагревателя осуществляется с помощью фланцевого соединения. Водяные нагреватели могут устанавливаться в любом положении, позволяющем произвести его обезвоздушивание. Направление движения воздуха должно соответствовать указателю на калорифере.
- Нагреватель рекомендуется устанавливаться так, чтобы воздушный поток был равномерно распределен по всему сечению.
- Перед нагревателем должен быть установлен воздушный фильтр, защищающий от загрязнения.
- Нагреватель может устанавливаться перед или за вентилятором. Если нагреватель находится за вентилятором, рекомендуется предусмотреть между ними воздуховод не менее 1-1,5 м для стабилизации потока воздуха, а также не превышать максимально допустимую температуру воздуха внутри вентилятора.
- Калорифер необходимо подключать по принципу противотока, иначе его производительность

будет ниже на 5-15%. Все расчетные номограммы в каталоге действительны для такого подключения.

- Если теплоносителем является вода, нагреватели предназначены для установки только внутри помещения. Для наружного монтажа необходимо в качестве теплоносителя применять незамерзающую смесь (например, раствор этиленгликоля).
- Для правильной и безопасной работы нагревателей рекомендуется применять систему автоматики, обеспечивающую управление и защиту от замерзания в комплексе:
- автоматическая регулирование мощности и температуры нагрева воздуха;
- ✓ включение системы вентиляции с предварительным прогревом нагревателя;
- ✓ применение воздушных заслонок, оборудованных сервоприводом с возвратной пружиной;
- ✓ отслеживание состояния фильтра с помощью датчика дифференциального давления;
- ✓ остановка вентилятора в случае угрозы замерзания нагревателя.

Условное обозначение

Серия

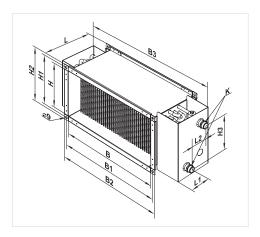
HKB

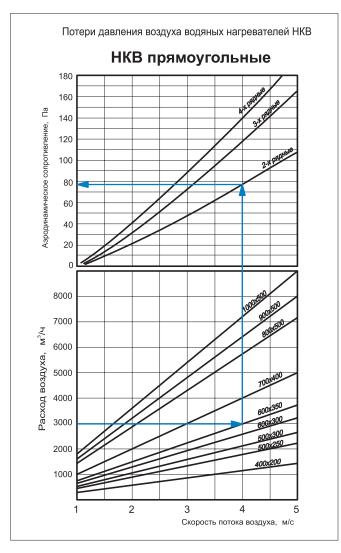
Размер фланца (ШхВ), мм

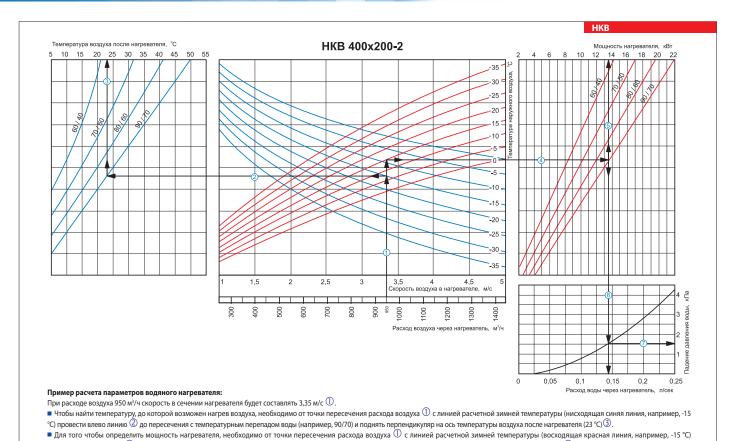
400x200; 500x250; 500x300; 600x300; 600x350; 700x400; 800x500; 900x500; 1000x500

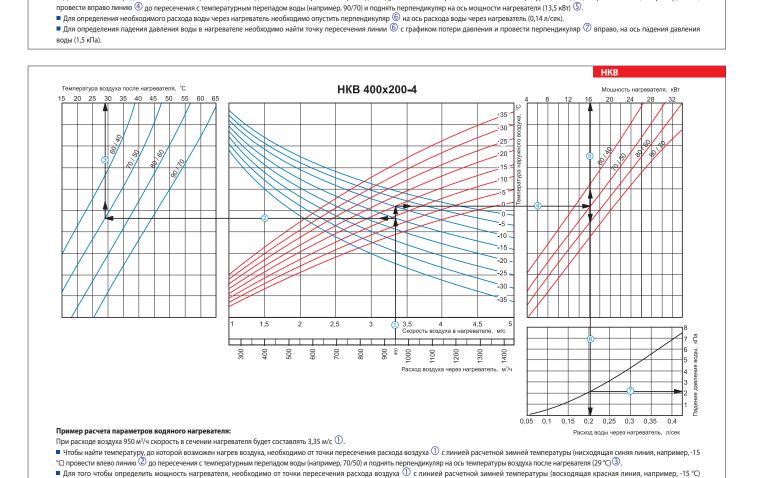
Кол-во рядов трубок

2; 3; 4

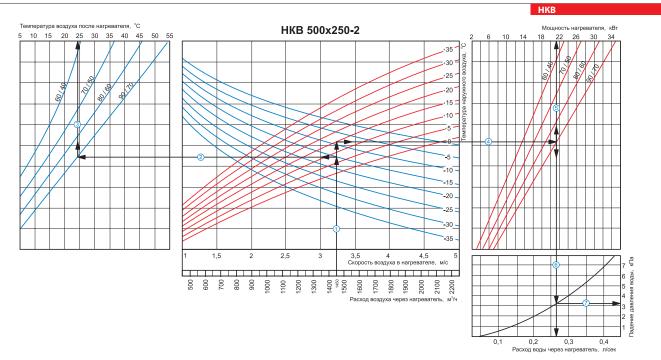

Принадлежности



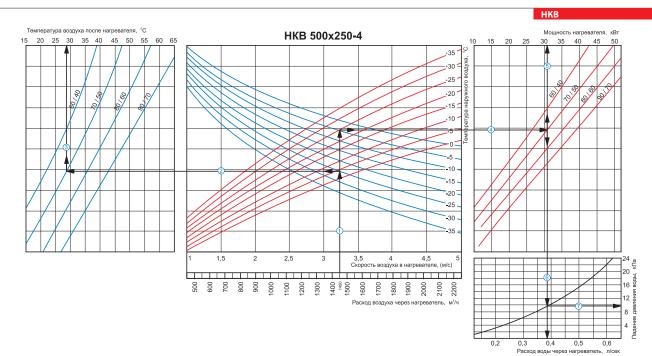

Смесительный узел


Габаритные размеры изделий

Тип	Размеры, мм												Кол-во	Macca,
	В	B1	B2	В3	Н	H1	H2	НЗ	L	L1	L2	K	рядов трубок	КГ
HKB 400x200-2	400	420	440	565	200	220	240	150	200	43	43	G 3/4"	2	7,6
HKB 400x200-4	400	420	440	565	200	220	240	150	200	38	65	G 3/4"	4	8,1
HKB 500x250-2	500	520	540	665	250	270	290	200	200	43	43	G 3/4"	2	15,8
HKB 500x250-4	500	520	540	665	250	270	290	200	200	38	65	G 3/4"	4	16,3
HKB 500x300-2	500	520	540	665	300	320	340	250	200	43	43	G 1"	2	11,5
HKB 500x300-4	500	520	540	665	300	320	340	250	200	38	65	G 1"	4	12,0
HKB 600x300-2	600	620	640	765	300	320	340	250	200	43	43	G 1"	2	21,8
HKB 600x300-4	600	620	640	765	300	320	340	250	200	38	65	G 1"	4	22,3
HKB 600x350-2	600	620	640	765	350	370	390	300	200	43	43	G 1"	2	22,4
HKB 600x350-4	600	620	640	765	350	370	390	300	200	38	65	G 1"	4	22,9
HKB 700x400-2	700	720	740	865	400	420	440	350	200	36	47	G 1"	2	27,8
HKB 700x400-3	700	720	740	865	400	420	440	350	200	42	58	G 1"	3	28,4
HKB 800x500-2	800	820	840	965	500	520	540	450	200	36	47	G 1"	2	36,5
HKB 800x500-3	800	820	840	965	500	520	540	450	200	42	58	G 1"	3	37,2
HKB 900x500-2	900	920	940	1065	500	520	540	450	200	36	47	G 1"	2	40,4
HKB 900x500-3	900	920	940	1065	500	520	540	450	200	42	58	G 1"	3	41,2
HKB1000x500-2	1000	1020	1040	1165	500	520	540	450	200	36	47	G 1"	2	44,3
HKB 1000x500-3	1000	1020	1040	1165	500	520	540	450	200	42	58	G 1"	3	45,2



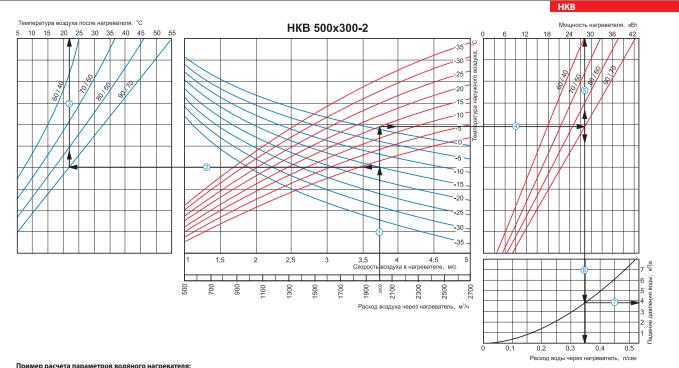
воды (2.1 кПа).


🗖 Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии 🌀 с графиком потери давления и провести перпендикуляр 🗇 вправо, на ось падения давления

провести вправо линию ④ до пересечения с температурным перепадом воды (например, 70/50) и поднять перпендикуляр на ось мощности нагревателя (16,0 кВт) ⑤.
■ Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⑥ на ось расхода воды через нагреватель (0,2 л/сек).

При расходе воздуха 1450 м³/ч скорость в сечении нагревателя будет составлять 3,2 м/с ①.

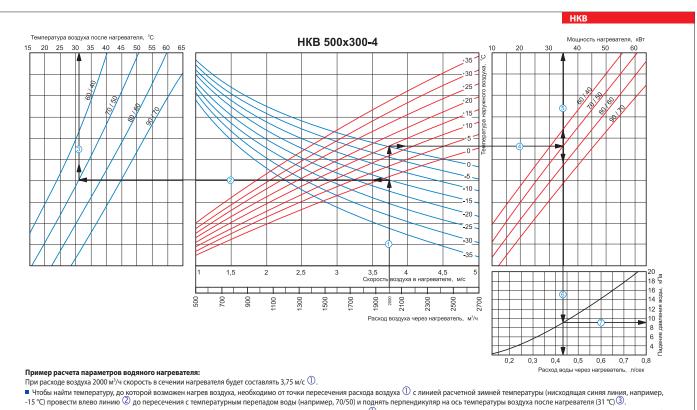
- 🛮 Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха 🛈 с линией расчетной зимней температуры (нисходящая синяя линия,
- например, -15 °С) провести влево линию ∅ до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось температуры воздуха после нагревателя (24 °С) ③.
 Для того чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например, -15 °С) провести вправо линию 🕙 до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось мощности нагревателя (21,5 кВт) 🗓
- Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⑥ на ось расхода воды через нагреватель (0,27 л/сек).
- Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии 🌀 с графиком потери давления и провести перпендикуляр 🕡 вправо, на ось падения давления воды (3,2 кПа).



Пример расчета параметров водяного нагревателя:

При расходе воздуха 1450 м³/ч скорость в сечении нагревателя будет составлять 3,2 м/с ①.

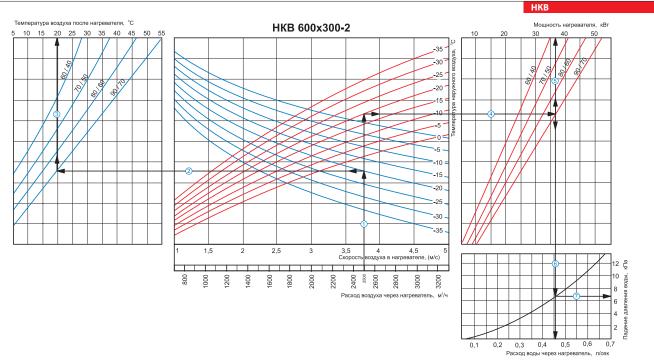
- 🗷 Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха 🛈 с линией расчетной зимней температуры (нисходящая синяя линия, например, -25 °С провести влево линию ∅ до пересечения с температурным перепадом воды (например, 70/50) и поднять перпендикуляр на ось температуры воздуха после нагревателя, 48 °С ③.


 ■ Для того чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например, -25 °С)
- провести вправо линию 🏵 до пересечения с температурным перепадом воды (например, 70/50) и поднять перпендикуляр на ось мощности нагревателя (31,0 кВт) 🕓
- Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⑥ на ось расхода воды через нагреватель (0,38 л/сек).
- 🗷 Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии 🌀 с графиком потери давления и провести перпендикуляр 🕜 вправо, на ось падения давления воды (9,8 кПа).

Пример расчета параметров водяного нагревателя:

При расходе воздуха 2000 м³/ч скорость в сечении нагревателя будет составлять 3,75 м/с ①.

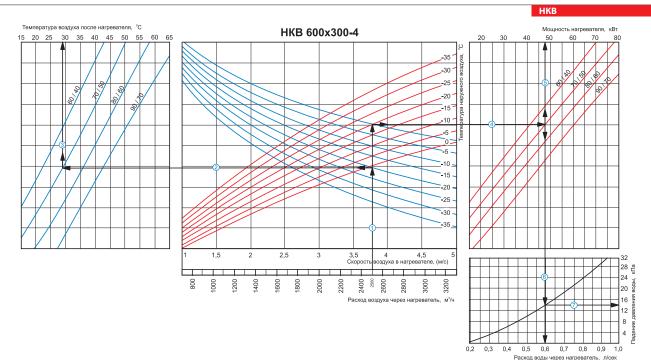
- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ⊕ с линией расчетной зимней температуры (нисходящая синяя линия, например, -15 °C) провести влево линию ② до пересечения с температурым перепадом воды (например, 90/70) и поднять перпендикуляр на ось температуры воздуха после нагревателя (22 °C) ③.
- Для того чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например, -15 °C) провести вправо линию ④ до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось мощности нагревателя (28,0 кВт) ⑤.
- Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⑥ на ось расхода воды через нагреватель (0,35 л/сек).
- 🗷 Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии 🌀 с графиком потери давления и провести перпендикуляр 🕜 вправо, на ось падения давления воды (3,8 кПа).



- ... Этровести влево липию № до пересечения с температурным перепадом воды (например, 70/50) и поднять перпендикуляр на ось температуры воздуха после нагревателя (31 °С) ③.

 Для того чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например, -15 °С) провести вправо линию ④ до пересечения с температурным перепадом воды (например, 70/50) и поднять перпендикуляр на ось мощности нагревателя (35,0 кВт) ⑤.

 Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⑥ на ось расхода воды через нагреватель (0,43 л/сек).


 Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии ⑥ с графиком потери давления и провести перпендикуляр ⑦ вправо, на ось падения воды (9,0 кПа).

При расходе воздуха 2500 м³/ч скорость в сечении нагревателя будет составлять 3,75 м/с

О.

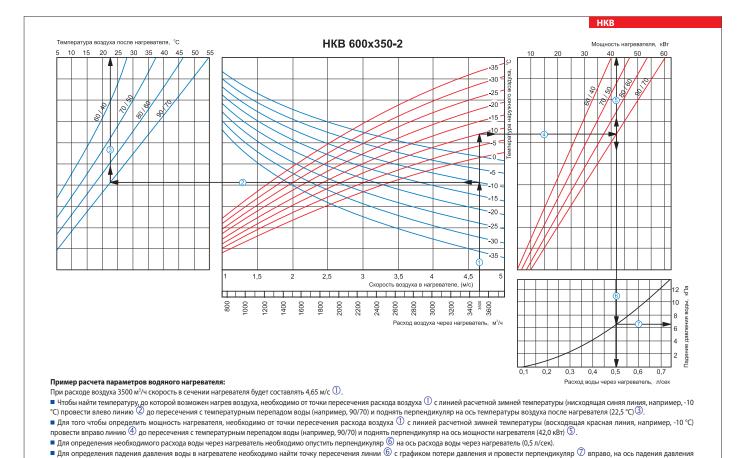
- Для того чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например, -20 °C) провести вправо линию ④ до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось мощности нагревателя (37,0 кВт) ⑤.
 Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⑥ на ось расхода воды через нагреватель (0,46 л/сек).
- Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии © с графиком потери давления и провести перпендикуляр 7 вправо, на ось падения давления воды (6,7 кПа).

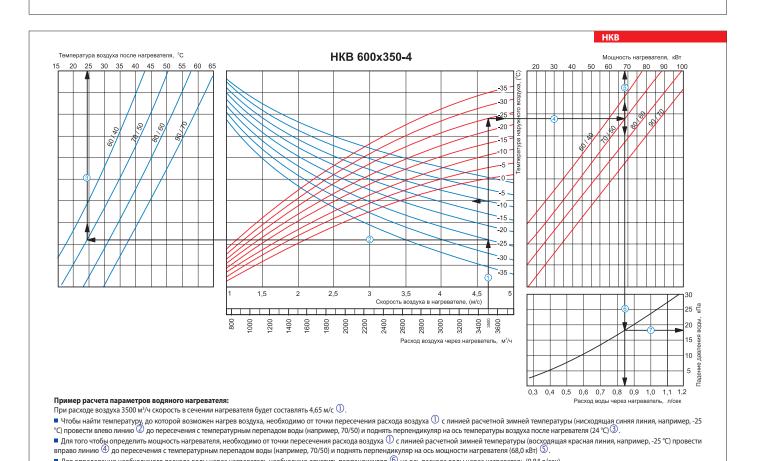
Пример расчета параметров водяного нагревателя:

При расходе воздуха 2500 м³/ч скорость в сечении нагревателя будет составлять 3,75 м/с \bigcirc .

- При расходе воздуха 2500 м²/ч скорость в сечении нагревателя будет составлять 3,75 м/с ∪.

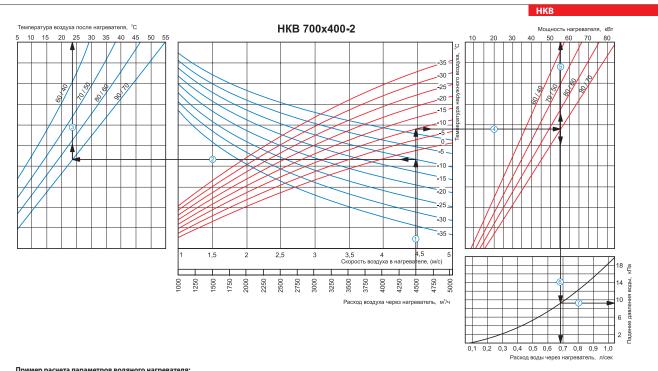
 Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (нисходящая синяя линия, например, -20 °C) провести влево линию ② до пересечения с температурым перепадом воды (например, 70/50) и поднять перпендикуляр на ось температуры воздуха после нагревателя (29 °C) ③.


 Для того чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например, -20 °C) провести вправо линию ④ до пересечения с температурным перепадом воды (например, 70/50) и поднять перпендикуляр на ось мощности нагревателя (48,0 кВт) ⑤.

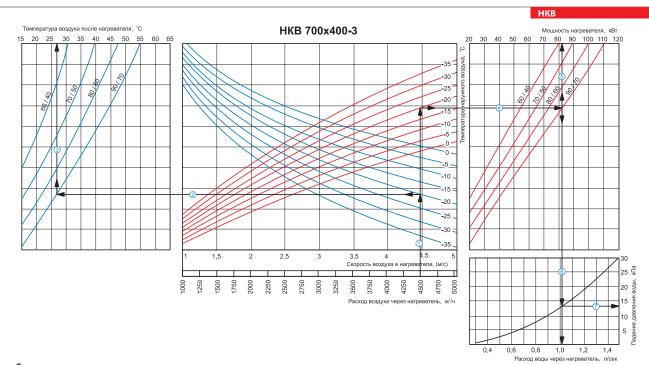

 Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⑥ на ось расхода воды через нагреватель (0,6 л/сек).

 Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии ⑥ с графиком потери давления и провести перпендикуляр ② вправо, на ось падения

- давления воды (14,0 кПа).


воды (6,5 кПа).

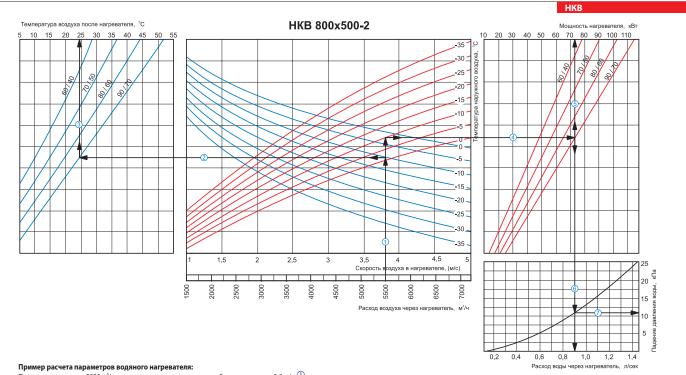
🗖 Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии 🌀 с графиком потери давления и провести перпендикуляр 🔈 вправо, на ось падения давления доды


🗷 Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр 🌀 на ось расхода воды через нагреватель (0,84 л/сек).

При расходе воздуха 4500 м³/ч скорость в сечении нагревателя будет составлять 4,45 м/с \bigcirc .

- тыть расходе воздуха и тоскорость в сететии напреватель оздет систвылизить. О тыск о
- Для того чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха © слинией расчетной зимней температуры (восходящая красная линия, например, -10 °C) провести вправо линию ④ до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось мощности нагревателя (55,0 кВт) ⑤.

 Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⑥ на ось расхода воды через нагреватель (0,68 л/сек).
- 🗷 Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии 🌀 с графиком потери давления и провести перпендикуляр 🕝 вправо, на ось падения давления воды (9,2 кПа).

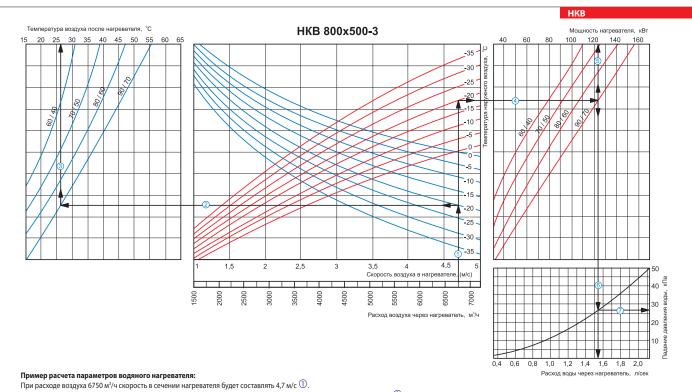


Пример расчета параметров водяного нагревателя:

При расходе воздуха 4500 м³/ч скорость в сечении нагревателя будет составлять 4,45 м/с \odot .

- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха © с линией расчетной зимней температуры (нисходящая синяя линия, например, -20 °C) провести влево линию ② до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось температуры воздуха после нагревателя (27 °C) ③.

- давления воды (13,0 кПа).

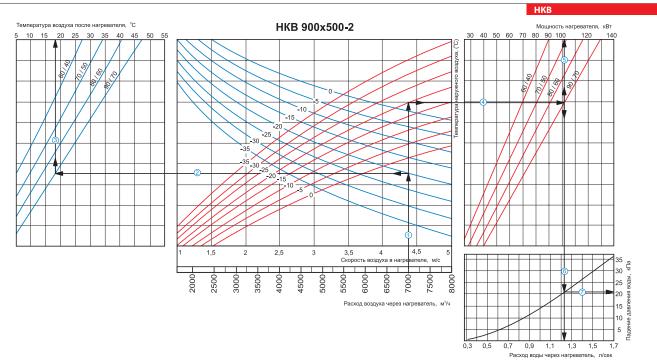

При расходе воздуха 5500 м³/ч скорость в сечении нагревателя будет составлять 3,8 м/с

О.

- тири расходе воздуха эзом и у скорость в сечении напреверенения от точки пересечения расхода воздуха. О с линией расчетной зимней температуры (нисходящая синяя линия, например, -10 °C) провести влево линию

 © до пересечения с температуры воздуха, необходимо от точки перепадом воды (например, 90/70) и поднять перпендикуляр на ось температуры воздуха после нагревателя (24,5 °C) ③.
- Для того чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например, -10 °C) провести вправо линию ④ до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось мощности нагревателя (73,0 кВт) ⑤.

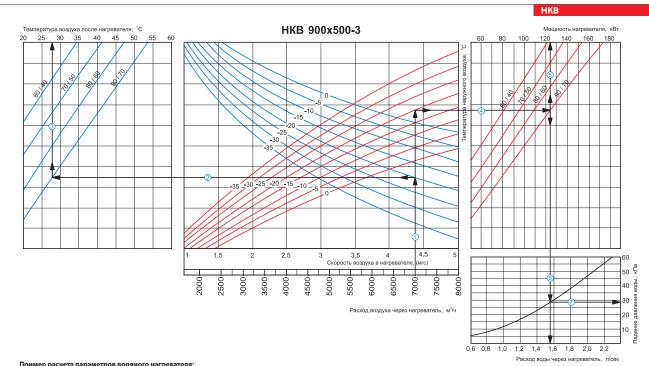
 Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⑥ на ось расхода воды через нагреватель (0,9 л/сек).
- 🗷 Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии 🌀 с графиком потери давления и провести перпендикуляр 🗇 вправо, на ось падения давления воды (11,0 кПа).


- тпри расходе воздуха 6 /50 м²/ч Скорость в сечении нагревателя оудет составиять 4,7 м с ∙ С.

 Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (нисходящая синяя линия, например, -20 °C)
 провести влево линию ② до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось температуры воздуха после нагревателя (26 °C) ③.

 Для того чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например, -20 °C) провести вправо линию ④ до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось мощности нагревателя (123,0 кВт) ⑤.

- Для определения необходимого расхода воды через нагреватель необходимо опустить перепендикуляр ©
 Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр (в на ось расхода воды через нагреватель (1,54 п/сек).
 Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии (в) с графиком потери давления и провести перпендикуляр (т) вправо, на ось падения давления воды (27.0 k∏a).

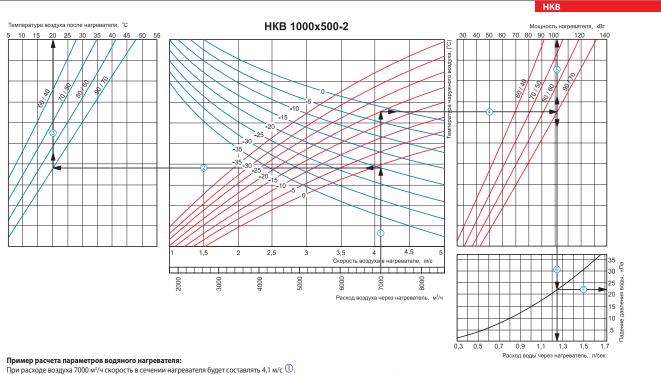


При расходе воздуха 7000 м³/ч скорость в сечении нагревателя будет составлять 4,4 м/с ①.

- тили расходе воздуха 7000 м 7 скорость в сечении нацреватели оддет систавлив 4-л м С С .

 Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха О с линией расчетной зимней температуры (нисходящая синяя линия, например, -20 °С) провести влево линию О опересечения с температурыми перепадом воды (например, 90/70) и поднять перпендикуляр на ось температуры воздуха после нагревателя (18 °С) О.
- Для того чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например, -20 °C) провести вправо линию ④ до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось мощности нагревателя (102,0 кВт) ⑤.

 Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⑥ на ось расхода воды через нагреватель (1,23 л/сек).
- Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии ⑥ с графиком потери давления и провести перпендикуляр ⑦ вправо, на ось падения давления воды (21,0 кПа).



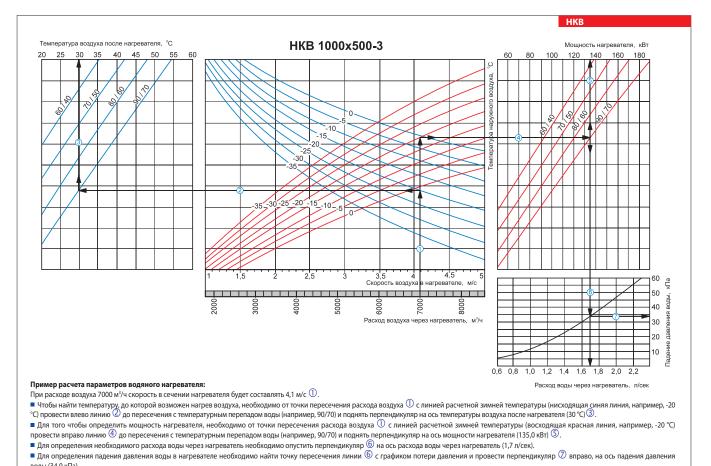
Пример расчета параметров водяного нагревателя:

При расходе воздуха 7000 м 3 /ч скорость в сечении нагревателя будет составлять 4,4 м/с \odot .

- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха
 О линией расчетной зимней температуры (нисходящая синяя линия, например, -20 °C) провести влево линию
 о пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось температуры воздуха после нагревателя (28 °C)
 О линией расчетной зимней температуры (восходящая красная линия, например, -20 °C)

 Для того чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха
 О линией расчетной зимней температуры (восходящая красная линия, например, -20 °C)
- провести вправо линию ④ до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось мощности нагревателя (124,0 кВт) ⑤
- Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⑥ на ось расхода воды через нагреватель (1,55 л/сек).
 Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии ⑥ с графиком потери давления и провести перпендикуляр ⑦ вправо, на ось падения давления воды (28,0 кПа).

- При расходе воздуха /000 м²/ч скорость в сечении нагревателя будет составлять 4,1 м/с ∪.


 Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ⊕ с линией расчетной зимней температуры (нисходящая синяя линия, например, -20 °C) провести влево линию ⓒ до пересечения с температурым перепадом воды (например, 90/70) и поднять перпендикуляр на ось температуры воздуха после нагревателя (20 °C) ⑤.

 Для того чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ⊕ с линией расчетной зимней температуры (восходящая красная линия, например, -20 °C) провести вправо линию ⊕ до пересечения с температурным перепадом воды (например, 90/70) и поднять перпендикуляр на ось мощности нагревателя (101,0 кВт) ⑤.

 Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⓒ на ось расхода воды через нагреватель (1,25 л/сек).

 Для определения падения давления воды в нагреватель необходимо найти точку пересечения линии ⓒ с графиком потери давления и провести перпендикуляр ๋ вправо, на ось падения давления и провести перпендикуляр ๋ вправо, на ось падения давления воды (22,0 кПа).

воды (34,0 кПа).