SUPPLY AND EXHAUST PLASTIC AIR DISK VALVES

A...VRF Series

Application

- For supply and exhaust ventilation, air conditioning and heating.
- Mounting in false ceilings or walls.
- Used to arrange correct air circulation in premises.

Design

- Made of high quality plastic (ABS plastic or polystyrene).
- Special aerodynamic disk valve design ensures uniform air distribution.
- Smooth air pass regulation due to rotation of central part of the damper.
- Easy installation with fixing lugs and a mounting flange with a lock ring.
- The internal part has a sealing ring for more tight fit.

Grille modifications

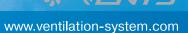
A 80 VRF, A 100 VRF, A 125 VRF, A 150 VRF, A 200 RF - models with a mounting flange

- Equipped with a mounting flange and a lock ring for easy connection to round Ø 80/100/125 /150/200 mm air ducts.
- Mounting flange is fixed to false ceiling with screws.

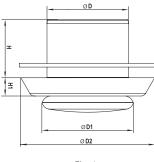
• Lock ring provides easy fixing of the flexible air duct on a mounting flange.

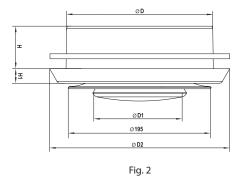
A 200 VRF – double model with Ø 200 mm mounting flange

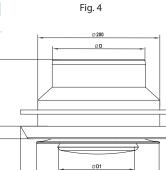
- Two regulating elements for more perfect air flow distribution.
- Equipped with a mounting flange and a lock ring for easy connection to round Ø 200 mm air ducts.
- Mounting flange is fixed to false ceiling with screws.
- Lock ring provides easy fixing of the flexible air duct on a mounting flange.



A 200/150 VRF – two-element model with a mounting flange

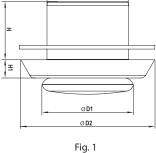

- Two regulating elements for more perfect air flow distribution.
- Equipped with a mounting reducing flange and a lock ring for easy connection to round Ø 150 mm air ducts.
- Mounting flange is fixed to false ceiling with screws.
- Lock ring provides easy fixing of the flexible air duct on a mounting flange.

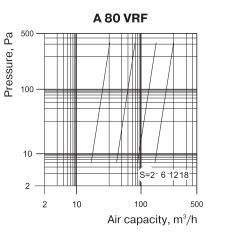




Overall dimensions

Model	Dimensions [mm]						Damper normal	
	D	D1	D2	Н	H1	Air pass, [m ²]	pitch, mm	Fig. no.
A 80 VRF	80	90	132	58	18	00.002	08	1
A 100 VRF	100	90	148	58	28	00.006	020	1
A 125 VRF	125	110	166	58	20	00.008	022	1
A 150 VRF	150	128	200	58	20	00.009	023	1
A 200 RF	200	183	246	58	20	00.009	016	1
A 200 VRF	200	128	246	58	20	0.0010.008	019	2
A 200/150 VRF	150	128	246	82	20	0.0010.008	019	3




ļΞ

Ø D2 Fig. 3

Ø195

Technical parameters

A 150 VRF

S=2

8 ⁻ 12

100

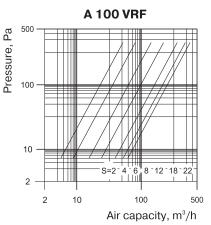
22

500

18

Pressure, Pa

500

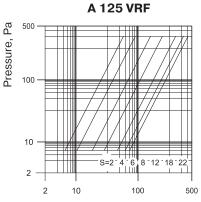

100

10

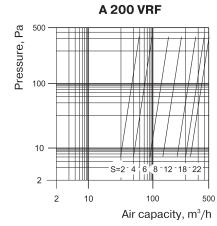
2

2

10



A 200 RF


6

500

100

Air capacity, m³/h

10

500

100

10

2

2

Pressure, Pa

The internal part of the air disk valve is pulled out to ensure the required clearance S mm (fig. 4) to provide required air flow according to the diagram.